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Abstract 
Petri  nets are a well established modelling technique 

for  analyzing parallel systems. When coupled with an 
event-driven operating system, Petri nets can provide 
an effective means for  integrating and controlling the 
functions of distributed robotic applications. Recent 
work has shown that Petri  net graphs can also serve 
as remarkably intuitive operator interfaces. 

In this paper the advantages for  using Petri nets 
as high-level controllers to  coordinate robotic functions 
are outlined; the considerations f o r  designing Petri net 
controllers are discussed; and simple Petri net s t w c -  
tures f o r  implementing an interface for  operator super- 
vision are presented. A detailed example is presented 
which illustrates these concepts f o r  a sensor-based as- 
sembly application. 

1 Introduction 
The Theory of Intelligent Machines, as proposed in 

[8], describes a hierarchical organization of the func- 
tions of an autonomous robot into three levels: an Exe- 
cution Level containing the hardware and basic control 
functions, a Coordination Level inte rating the capa- 
bilities of the intelligent machine ( I d  across hardware 
systems, and an Organization Level providing high:r- 
level planning and reasoning capabilities. Figure 1 11- 
lustrates this hierarchical organization. An analytic 
formulation of the theory using information-theoretic 
measures of uncertainty for each level of the intelli ent 
machine has been developed in recent years [9][lOf A 
long-term research goal of the Center for Intelligent 
Robotic Systems for Space Exploration (CIRSSE) is 
to attempt, guided by these theories, implementations 
of autonomous robots. 

In the past year at  CIRSSE a computer architecture 
was developed that implements the lower two levels of 
the intelligent machine [4]. The architecture supports 
an event-driven programming paradigm that is inde- 
pendent of the underlying computer architecture and 
operating system. This approach has enabled us to 
build heterogenous, distributed applications that in- 
tegrate Execution-level and coordination-level func- 
tions. 

Execution-Level controllers for motion and vision 
systems were created which interface to testbed hard- 
ware comprising two 9-DOF arms (controlled as an 

18-DOF manipulator) and 5 cameras. The control sys- 
tems are highly modular and configurable in order to 
support a flexible program of research. Additionally, 
by basing both motion and vision control systems on 
the same architecture, integration among Execution- 
level functions and with upper level operations be- 
comes feasible. 

Robotic systems may be designed for a spectrum of 
modes of operator interaction ranging from simple tele- 
operation (as initially applied to nuclear fuel process- 
ing) to virtually complete autonomy (as exempilfied by 
NASA space probes such as Voyager or Galileo) with 
varying levels of intelligence. Intermediate in this spec- 
trum is supervised autonomy - intermediate both in the 
degree of operator interaction and in the intelligence 
of the robotic system. When the requirements for this 
range of robotic applications are mapped onto the hi- 
erarchical organization proposed by the Theory of In- 
telligent Machines, we find that the Execution Level 
supports teleoperation, the Coordination Level is ad- 
ditionally needed for supervised autonomy, and the full 
hierarchy including the Organization Level must be in 
place to achieve autonomy. 

While we are a number of years away from even 
modestly-intelligent autonomous machines, the foun- 
dation exists today to research operator interaction 
with the Coordination Level to effect supervised au- 
tonomy. Key research issues include the “division of la- 
bor” between machine and operator, the effect of com- 
munication delays for remotely supervised machines, 
computer and control architectures for distributed ap- 
plications, mechanisms for improving reliability and 
robustness of robot functions, and the design of the 
interface with the operator [S][ll]. 

The paper is organized as follows. This section has 
briefly described the hierarchical model of an intel- 
ligent machine that serves as an organizational de- 
sign for this work. A Petri net implementation of 
the coordination-level of the hierarchical model is pre- 
sented in Section 2. Section 3 covers recent work 
at CIRSSE aimed at integrating robotic functions 
through the use of Petri nets. Section 4 outlines Petri 
net structures that enable an operator to monitor and 
to interact with the robotic system. And, Section 5 
presents an extended example based on an assembly 
application developed at CIRSSE. 



2 Coordination-Level Petri Nets 
At CIRSSE we address supervised autonomy re- 

search issues in the context of a hierarchically- 
controlled, but parallel, distributed robotic system. 
As discussed above, we have developed a computer 
architecture and Execution-level control systems that 
enable experimentation with an integrated robotic 
testbed. Earlier theoretical work [12][13 took a lin- 
guistic schemata approach to describe L oordination 
Level function, and used Petri nets to model its op- 
eration. Hence, our first attempts to implement the 
Coordination Level have also been based on Petri nets. 
2.1 

Petri nets (PN) are graph-theoretic tools for mod- 
eling the dynamic behavior of discrete event systems. 
Ordinary PN are directed graphs with two types of 
nodes called places and transitions, which are con- 
nected by arcs [7]. In a PN graph, places are repre- 
sented by circles, and transitions appear as bars. A 
simple PN graph is shown in Figure 2. 

Places may contain tokens that indicate the state of 
the PN. Tokens are moved between places by the firing 
of a transition. The P N  software developed at  CIRSSE 
employs a “two-phase” transition firing rule: 1) tran- 
sitions are enabled when there are tokens in all input 
places of the transition, these tokens are removed when 
the transition fires; 2) firing the transition causes an 
action, that may result in a time delay; and 3) once 
the action is complete, token are added to the transi- 
tion’s output places. PN such as these which contain 
transitions that may require a probabilistic amount of 
time to fire are called Generalized Stochastic Petri Nets 
(GSPN). 

A simple example will illustrate the operation of 
a GSPN. In Figure 2a there are tokens in places p1 
and pa, the input places of transition t l ;  hence, tl  is 
enabled. When t l  fires, the tokens are removed from p l  
and p2 ,  and the action associated with t l  is invoked. 
CIRSSE PN displays indicate a transition “firing in 
progress” by inverting the transition symbol as shown 
in Figure 2b. When the action is completed, tokens are 
added to p3 and p4,  the output places of t l ;  resulting 
in the marking shown in Figure 2c. Now, transitions t 2  
and t 3  are enabled and can fire in parallel. Transition 
t 4  will not be enabled until the actions associated with 
both t 2  and t 3  have finished and places p5 and p6 are 
marked. This example shows how PNs may be used to 
control parallel operations and enforce the precedence 
of operations. 

Initial CIRSSE research was based on conventional 
GSPNs; however, all current research uses enhanced 
GSPNs that include an additional condition on the 
enabling of transitions. This added condition is im- 
plemented as an enabling function for each transition 
which is called whenever all of the transition’s input 
places are marked and the transition would otherwise 
be enabled. The enabling function may check system 
status or test a loop variable and then return ‘True’ or 
‘False’ to indicate whether the transition should fire. 
With enabling functions a GSPN can model determin- 
istic and conditional programming loops, and can im- 
plement a Petri Net Transducer (PNT) [12]. 

Often enhancement to conventional theory results in 

What is a Petri Net? 

a loss of analytical tools; such is the case with adding 
the enabling function to GSPNs. Fortunately, recent 
work is begining to close the gap [2], and work con- 
tinues. Future P N  enhancements may enable the con- 
struction of PN controllers with more automated error 
recovery, and of coordinator PN that incorporate feed- 
back and learning. 
2.2 Why use Petri Nets? 

The original rationale for using Petri nets was based 
on their representational capabilities and the availabil- 
ity of PN analytical techniques. Later, as we gained 
experience using them, we found that Petri net graphs 
can Serve as powerful and intuitive user interfaces. The 
primary benefits of PNs for integrating robotic func- 
tions and supporting operator supervision are: 

0 Petri nets can represent the parallelism of a dis- 
tributed robotic system, both for modelling and 
for control. When coupled with an event-driven, 
real-time operating system, a PN can provide the 
basis for control software that fully exploits the 
capability of a distributed system to perform con- 
current operations. 

0 Analytical techniques can determine the re- 
versibility, liveness, and boundedness of the P N  
controller. These important properties respec- 
tively ensure that the system can recover to its 
initial state, is free of dead-lock, and correctly 
handles its resources [5]. 
PN controllers can be built hierarchically from 
simplier subsystems while retaining their repre- 
sentational power and desirable properties. Of 
equal importance, complex PN may be abstracted 
as reduced nets, under reasonable restrictions [3]. 

e The state of the system can be ascertained di- 
rectly from the marking of the PN graph. Fur- 
ther, the preconditions for an operation and the 
precedence of operations are readily apparent in 
the PN graph. Through judicious design, a re- 
duced PN can be obtained that accurately repre- 
sents the system in an intuitive form suitable for 
an user interface. 

0 PN display software can be built to allow the user 
to interact with the system to control the pace and 
sequence of operations. Later in this paper we will 
discuss simple PN structures that implement oper- 
ator authorization/confirmation, and that enable 
the operator to assume manual control. 

2.3 Dispatcher-Coordinator Structure 
The role of the Coordination Level in the Theory 

of Intelligent Machines is to interpret and manage the 
plans from the Organization Level, add real-time de- 
tails as appropriate, and communicate.instructions to 
the Execution Level in order to coordinate the oper- 
ation of the IM. In addition, the Coordination Level 
monitors machine performance to provide feedback for 
refining short-term decision making and to assist re- 
planning when the nominal task plan is not successful. 

As shown in Figure 1, the Coordination Level of the 
IM is organized into a tree structure, with a Dispatcher 
at  the root and multiple Coordinators at the leaves. In 



a fully autonomous IM, decisions are made at the Or- 
ganization Level and are communicated to the Coordi- 
nation Level through the Dispatcher. In a supervised 
autonomy application the operator directly interacts 
with the Dispatcher. In both instances, the Coordina- 
tors interface with their corresponding Execution-level 
functions. 

Viewed from the bottom up, the Dispatcher is the 
first component of the IM that deals with the machine 
as a whole; and thus can coordinate actions across Ex- 
ecution Level functions, e.g. move a manipulator to 
a position determined by visual sensing. As its name 
suggests, the Dispatcher’s primary function is to re- 
ceive commands from the Organization Level or an op- 
erator, and to dispatch these commands to the appr- 
priate Coordinator for implementation. Additionally, 
the Dispatcher must decompose high-level commands 
into a sequence of (often parallel) Coordinator oper- 
ations, and to instantiate real-time values to the ab- 
stract values used in planning or that were input sym- 
bolically. This description is a simplification, however, 
as the Dispatcher is called upon to perform a num- 
ber of other functions such as supporting system-wide 
communications, scheduling use of resources, detecting 
and correcting intermediate-level errors, and perform- 
ing some run-time planning. 

A Coordinator can be considered as an expert in ap- 
plying the deterministic functions of a narrow domain 
of the Execution Level. For instance, the Motion Co- 
ordinator may have several strategies for moving the 
tool frame of a manipulator into a requested position 
and orientation (e.g. employing redundant degrees of 
freedom), and can choose the strategy with the high- 
est probability of success based on current constraints 
of the environment (e.g. obstacles) and time goals. 
Coordinator operations correspond to underlying ca- 
pabilities of the Execution-level hardware; and so do 
not change when the system is reprogrammed for a 
different application. 

The Coordinators also play a role in error handling. 
While a nominal plan may be recommended by the 
organization-level planner, it is the Coordinator’s re- 
sponsibility to reliably accomplish the requested task 
in real time. Errors are handled first by the Coordina- 
tor, and are passed up to the Dispatcher only when a 
local strategy is not adequate to resolve the condition. 
In some instances the Dispatcher must turn over error 
resolution to the Organization Level where operations 
may be replanned; or, in a supervised application, to 
turn control over to the operator. Feedback is also 
provided through the Coordinators in order to update 
knowledge bases and improve decision making of the 
IM [lo]. 

In building a P N  implementation of the Coordi- 
nation Level for a specific application, only the Dis- 
patcher Petri net need be designed since the Co- 
ordinator PNs are reused. PN transitions of the 
Dispatcher represent actions performed by the Co- 
ordinators (such as movesobot or captureimage); 
while places represent states of the system 
as robot-atseady-position or required-dataexist$!$ 
The Dispatcher is connected to the Coordinator PNs 
through a Coordination Structure as discussed in [13]. 
The Coordination Structure consists of a set of tran- 

sitions and places that control access to Coordinator 
resources and ensure that the thread of execution re- 
turns to the appropriate Dispatcher transition. 

Transitions in the (predefined) Coordinator PNs 
represent actions performed by Execution Level con- 
trol operations. When one of these transitions fires, a 
robot control function is called. The structure of the 
Coordinator PN ensures that the preconditions for a 
requested operation are met and run-time data values 
are supplied before the control action is performed. 
The next section will address how the PNs are inte- 
grated with the controllers in a distributed robotic ap- 
plication. 

3 Integration of Robotic Functions 
When the tasks of the hierarchical model of the in- 

telligent machine (Figure 1) are assigned to the com- 
ponents of the testbed hardware, a superficially similar 
organization is obtained as shown in Figure 3. In real- 
ity, the IM hardware implementation has three charac- 
teristics that require a more complex organization that 
suggested by the hierarchical model: 

The system is distributed - comprising multi- 
ple, loosely-coupled processors, possible widely- 
separated spatially. For instance, part of the sys- 
tem may be in orbit while the remainder is ground- 
based. 
The system is heterogeneous - employing diverse 
processor architectures, operating systems, and 
communication media and protocols. 
The system spans a wide range of t ime scales - 
from synchronous sub-5 ms. control loops to ape- 
riodic run-time planning and human time-scale in- 
teractions. 

We suggest that these characteristics will be common, 
to  varying degree, among most autonomous or telesu- 
peruised robotic applications. 

This characterization describes the CIRSSE testbed 
well. Computing facilities in CIRSSE’s robotics lab in- 
clude two multi-microprocessor VME-backplane com- 
puters, and several UNIX workstations (Sun SparcSta- 
tions and Sun 4s). The VME cages are used for real- 
time applications such as control of robot manipula- 
tors and camera subsystems, and for image process- 
ing. These real-time applications are implemented in 
the VxWorks operating system. UNIX workstations 
support user interfaces and higher-level IM functions 
such as path planning and the Coordination Level Petri 
nets. The VME cages and workstations are intercon- 
nected by a local network operating the standard eth- 
ernet protocol. 

One of the challenges we faced in building the 
CIRSSE testbed was to integrate the heterogeneous 
computing environment. We sought a means to build 
distributed applications that span all of the labora- 
tory’s equipment and take advantage of the parallel 
organization of the subsystems. 
3.1 Distributed Applications 

To cope with the need to build distributed applica- 
tions, we developed extensions to UNIX and VxWorks 
that effect a communication layer between the oper- 
ating system and the application. A simple, uniform 



programming interface was produced which encourages 
the development of modular functions that can be in- 
terchanged (to construct applications from standard 
components) and that can be moved among proces- 
sors (to balance loads). These operating system ex- 
tensions were named the CIRSSE Testbed Operating 
System (CTOS). 

In broad terms, CTOS supports three objectives: 
1) distribution of tasks, 2) communication between 
tasks, and 3) synchronization of tasks and the applica- 
tion. An event-driven environment was implemented 
in which tasks execute independently and in parallel, 
and communicate by exchanging messages. CTOS pro- 
vides five services: 1) a Bootstrap service loads and 
initializes software modules on each processor as spec- 
ified via configuration files; 2 )  a Task identification ser- 
vice assigns a unique identification to every task and 
associates it with the task’s symbolic name for later 
retrieval; 3 )  a Message passing service acts as the pri- 
mary communication mechanism between tasks; 4 )  a 
Synchronization service provides high frequency, low 
latency execution of real-time software functions on 
VME cages; and 5) an Inter-processor blocking service 
constitutes a second faster-but-limited communication 
mechanism between processors on a VME cage based 
on a “distributed semaphore.” 

Control software for CIRSSE’s two 9-DOF robot 
arms and for a 5-camera vision subsystem was writ- 
ten based on CTOS [4]. Software for executing Petri 
nets were also implementation with CTOS so that Co- 
ordination Level P N  could be fully integrated with the 
Execution-level controllers. 

The diagram in Figure 4 describes the integration of 
P N  and controllers. When the moveiobot transition 
fires, the PN task sends a CTOS message to another 
task, labeled the service task, instructing it to perform 
the move operation. The service task prepares and 
sends a message to the robot controller task; this mes- 
sage contains the run-time data specifying motion pa- 
rameters, e.g. destination and speed. After the robot 
controller completes the requested operation it sends a 
reply message to the service task, which relays the re- 
ply to the PN task to acknowledge completion. Firing 
of the moveiobot transition then finishs by adding a 
token to place done. 

In this example, tasks are assigned to specific pro- 
cessors in order to access local capabilities, e.g. PN 
displays need X-window support and controllers need 
reaI-time connection to hardware interfaces, or to op- 
timize performance by reducing data transfer volume. 
Many tasks, such as the service task, need only a gen- 
eral compute resource and can be assigned to either a 
VME cage or an UNIX workstation. In fact, a single 
version of source code can be written that may run 
on either type of computer. CTOS routes messages 
between tasks based on symbolic names given to the 
task by the user - the user need not know the destina- 
tion task’s location. Thus, the distributed application 
can easily be reconfigured and tasks moved from one 
processor to another by modifying a configuration file 
and restarting the application. 

3.2 Data Object Manager 
Figure 4 also identifies another task called the Data 

Object Manager (DON). The purpose of the DOM is 
to store data generated in one transition for use by a 
later transition. In this example, an on-line path plan- 
ner retrieves the robot’s current position and goal po- 
sition from the DOM, calculates a path specification, 
and then saves the path in the DOM. The existance of 
a valid path stored in the DOM is indicated by mark- 
ing the path-valid place in the Coordinator PN. The 
path-valid place is an input place to a subsequent 
moveiobot transition indicating that a valid path is 
a precondition for the move operation. Note that the 
goalpos data object shown in this example was in- 
put to the DOM via an earlier transition operation 
not shown in the figure. The goal-pos can be defined 
through a sensor operation or input by an operator. 

A token present in a “data place” indicates the exis- 
tance of a valid data object in the DOM. A data object 
is created as the result of a transition action such as a 
path planning calculation or sensing operation or entry 
of information by an operator. Using the CIRSSE PN 
controller interface an operator may add and subtract 
tokens from places through X-window mouse opera- 
tions. Data places are protected so that the operator 
may remove a token but cannot add a token, i.e. can- 
not create a data object “out of thin air.” Data places 
are displayed as double-line or heavy circles in P N  con- 
troller displays. 

The DOM is designed as a distributed service with 
components executing on all UNIX and VME chassis 
of the application. By distributing the operation of the 
DOM the volume of data transferred can be minimized 
as DOM services can be performed locally when data 
source and consumer are on the same chassis. The 
DOM is not a database manager since it does not sup- 
port search operations or store data in normal form. 
In fact, the DOM simply stores blocks of bytes and 
retains no information as to its content. By using PN 
places, as described above, we can ensure data integrity 
and obtain data locking features similar to those of a 
database manager. 
3.3 Building Applications 

Tools to assist the construction of PN controllers 
are currently being developed at CIRSSE. Since the 
Coordinators have a fixed PN structure representing 
the capabilities of the underlying Execution Level sys- 
tem, the Dispatcher P N  can be built from standardized 
components. It is feasible to develop a menu-driven 
tool that would enable the user to interactively gen- 
erate the Petri net. This possibility is suggested by 
Figure 5. 

In this example the user is specifying a control se- 
quence to move the robot to a position determined 
by visual sensing. In Figure 5a the PN structure for 
the LOCATE operation is generated by choosing Lo- 
cate/Arm-camera from the menu. The PN structure 
for the MOVE operation is added in Figure 5b. And 
finally, the user equates pairs of places to joint the 
LOCATE and MOVE operations to form the PN of 
Figure 5c. 

The PN structure in Figure 5 is the reduced PN 
used for the controller display; the underlying PN 



is much more complex. The tools for constructing 
P N  controllers must also build connections between 
Dispatcher and Coordinators, implement calls to the 
DOM, and add structure for operator interaction as 

PN building tools will allow interactive development 
whereby the controller is run, modified, and rerun on 
a live system without rebooting between trials. 
3.4 Recent Results 

Two integrated applications have been built to 
demonstrate the capabilities of this approach. A cam- 
era calibration application was developed in which a 
light source grasped by a 9-DOF robot arm is moved 
within the work space of a stereo pair of ceiling- 
mounted cameras, and positional data is collected 
for later calculation of camera calibration parameters. 
This application requires cooperation of both the ma- 
nipulator and vision subsystems (e.g. the robot must 
stop while the cameras capture an image), and can 
take advantage of some parallelism (e.g. querying the 
robot joint position while finding the light source in the 
image). This application was intended to demonstrate 
the basic integration concepts, and had little operator 
interaction. 

The second application is a representative subse- 
quence of an assembly task in which a strut is to 
be inserted into a partially completed strut-and-node 
structure. (This task was originally selected as rel- 
evant to space-based construction, however revisions 
to Space Station Freedom have deemphasized strut- 
based designs.) The application requires a high degree 
of integration because the locations of parts and the 
structure are determined via the vision system rather 
than by using taught points or CAD models. The task 
also offers an opportunity to investigate operator in- 
teraction as the system may be run autonomously or 
“single-stepped” allowing the operator to judge suc- 
cessful completion of a subtask and to intervene if nec- 
essary. This application will be discussed in detail in 
Section 5. 

The Coordination Level PN for first application con- 
tains 50 places and 26 transitions. In the second ap- 
plication there are 168 places and 103 transitions. The 
PN for both applications were constructed manually; 
and the limits of the manual tools were reached in the 
second case. Our experience indicates that more ver- 
satile applications will require approximately an order 
of magnitude larger number of places and transitions, 
i.e. several thousand of each. To be practical, the syn- 
thesis of these large P N  must be based on standardized 
subnets, and their construction must be automated. 

4 Operator Supervision 
In this section we present the PN structures that 

can be added to Coordination Level PN controllers to 
implement an interface for operator supervision. Three 
issues are addressed: monitoring system state, autho- 
rizing or confirming a machine operation, and detect- 
ing errors and recovering via manual intervention by 
the operator. 
4.1 Monitoring System State 

System state may be read directly from the PN 
graph. The presence of a token in a PN place asserts 

will be discussed in Section 4.2). Eventually, t 6 e 

the condition represented by that place. For example, 
a place can represent a resource such as the availability 
of a robot arm. When the place is marked (ie. con- 
tains a token) the robot is available; and if the place 
is empty then the robot may not be used. Our analy- 
sis has found that places can be categorized into four 
classes: places representing existance or validity states 
of resources and data objects, places corresponding to 
control states such as “operation done,” and places 
symbolizing operator input states of authorization or 
request for manual control. 

System state is changed by firing a transition. For 
instance, a transition may be assigned to “reserve the 
robot,” then when the transition is fired a token is 
removed from the “robot available” place and added 
to the “robot in use” place; thus indicating the change 
of system state. In the case where a transition can not 
complete firing instantaneousIy, the transition symbol 
may be highlighted as seen earlier in Figure 2b. Hence, 
a highlighted transition indicates a system state of a 
particular “operation in progress.’’ 

Coordination Level PN controllers can be highly 
complex Petri nets with a large number of places and 
transitions. For this reason, the operator will usually 
interact with a reduced net representation of the PN 
controller. In a reduced net a number of places and 
transitions are abstracted into a simpler graph, per- 
haps as simple as a single transition. In this way the 
state space appears to be reduced for the purpose of 
simplifying the user interface. At times the operator 
will want to access the underlying complex PN; and so 
the interface software should support expansion of the 
reduced net to the full PN graph. 

Another valuable feature inherent to the PN opera- 
tor interface is that the precedence of operations is also 
apparent in the directed graph of the PN controller. 
The preconditions required to perform an operation 
are represented by the input places to that operation’s 
transition, and the sequence of operations needed to 
satisfy the preconditions can be read directly from the 
PN. Alternative operation sequences for achieving a 
desired state (e.g. via manual or automated processes) 
can be built into the P N  controller giving the operator 
a choice. 
4.2 Authorization/Confirmation 

Input places can be added to transitions to provide 
a means for an operator to authorize that an operation 
proceed, or to confirm that an operation was success- 
ful or not, and to choose the appropriate subsequent 
sequence. Further, the interface can allow the opera- 
tor to add and subtract tokens from the places of the 
PN. In our UNIX X-windows implementation the oper- 
ator moves the mouse cursor over a place and changes 
the number of token via the mouse buttons. A touch- 
screen would be an intuitive interface for this applica- 
tion. 

To illustrate this construct we will consider the ex- 
ample of a simple move operation. The reduced MOVE 
subnet in Figure 5b expands to the portion of the 
PN controller shown in Figure 6. The operation be- 
gins when the request move and Position places are 
marked. Recall that a token in the Position place 
indicates that a previous operation created a descrip- 



tion of the goal position for the robot movement and 
stored the position in the Data Object Manager. The 
request move place could have been marked by the 
operator or by the PN controller as the output of 
an earlier transition. The marking of request move 
and Posit ion places enables the PLAN PATH transition 
which fires, plans a plan, saves the path in the DOM, 
and then marks its output places request move and 
Path. (Note that if a preplanned path had been avail- 
able then the PLAN PATH operation could have been 
bypassed by marking the Path place rather than the 
Posit ion place at the start.) At this point the MOVE 
transition is enabled if the authorizo place is marked. 
The operator can “preauthorize” the move operation 
by injecting a token into the authorize place ahead 
of time as shown in the figure; or can specify that the 
system wait for operator authorization by leaving the 
authorize place empty. Once the MOVE transition has 
completed, the wait place will be marked; and the 
move operation can be finished by adding a token to 
the confirm place, thus allowing the FINISH transition 
to fire. 

An alternative mechanism for providing operator 
control is to execute the PN controller in single-step 
mode. When the PN controller is in single-step mode, 
enabled transitions do not fire automatically. The op- 
erator must point to the enabled transition with the 
mouse cursor and then click the mouse button to cause 
the transition’s firing. (This too is a good touch-screen 
application.) The advantage of this mechanism is that 
input places need not be added to every transition for 
which operator authorization or confirmation is de- 
sired. The disadvantage is that the entire P N  must 
be in single-step mode, and so the operator must la- 
boriously authorize each and every step. To alleviate 
this disadvantage we partition the PN controller into 
subnets that execute continuousIy and separate sub- 
nets that are set to  single-step mode. Typically, the 
Dispatcher P N  runs single-step and Coordinator PNs 
are put into continuous mode. For maximal flexibility, 
both operator interaction mechanisms are used; specif- 
ically, input places for operator authorization are in- 
cluded but are initialized to be nonempty, and the op- 
erator can switch between single-step and continuous 
modes at any time for any controller subnet. 

4.3 Error Detection/Recovery 
A long-term goal of CIRSSE research is to add more 

automated error detection and recovery to all levels 
of the intelligent machine with the aim of achieving 
more robust operation. At present it is practical to 
contruct Coordination Level PN controllers to enable 
an operator to perform error detection and recovery. 

One means of doing this is suggested by Figure 6 
where a TELEOPERATE transition has been included. 
Following completion of the MOVE transition, the o p  
erator has the choice of marking the confirm place to 
instruct the system to continue and finish the move 
operation, or mark the manual place to invoke teleop- 
eration. Conceptually, the operator would inspect the 
result of the robot movement and then decide whether 
to accept it or to correct it manually. The PN con- 
troller is designed such that the state of the PN is 
identical following teleoperation as it would have been 

if the operator had not intervened. 
It may not be possible (or at least highly impracti- 

cal) to anticipate all failure modes of a system. There- 
fore it is important that the controller can be restored 
to match the system state. With a P N  controller the 
operator can halt automated execution at any time, 
perform a manual operation or repeat a subsequence 
of the PN, and then adjust the marking of places to rec- 
oncile the PN controller with the actual system state. 
This ability to  intervene and repeat a subsequence of 
operations has proven very useful during development 
and debugging of applications. 

5 Example Application 
An example will illustrate the use of Petri net con- 

trollers to coordinate a sensor-based assembly appli- 
cation. CIRSSE’s testbed hardware consists of two 
9-DOF robots, plus cameras mounted on the ceiling 
and on robot wrists. Only one of the two arms is used 
in this application. Independent control systems are 
implemented on separate VME cages for robot and 
vision subsystems as described in [4]. Petri net con- 
trollers executing on Sun workstations serve to coor- 
dinate the operation of the independent subsystems. 
The resulting control architecture is shown in Figure 3. 
A diagram of CIRSSE’s testbed hardware appears in _. 

Figure 7. 
The application starts with a partially-completed 

strut and node assembly including two legs of an equi- 
lateral triangle. The objective is to add the last strut 
to complete the triangle. Locations of all struts and 
nodes are determined via the vision subsystem. The 
sequence of operations is: 

1. Initialize independent subsystems for camera, 
robot, and path planning. 

2. Use ceiling-mounted stereo cameras to find loca- 
tion of partially-completed strut assembly. 

3. Use robot wrist camera to refine positions of nodes 
which will receive the next strut. 

4. Locate and pickup strut from rack. 
5 .  Move to assembly and insert strut. 
6. Return robot to initial position and shutdown all 

The overall application (excluding initialization and 
shutdown) represents an elemental operation for the 
construction of larger strut and node assemblies. With 
Petri net controllers we can abstract these operations 
as a single step within a larger sequence of assembly 
operations. 

Application-wide coordination is provided by four 
PN controllers: dispatcher, motion coordinator, vi- 
sion coordinator, and path planning coordinator. Fig- 
ure 8 shows the Dispatcher PN controller display which 
serves as the user interface for this application. The 
display contains 47 places and 28 transitions which 
abstract the PN controller which actually contains 
118 places and 71 transitions. Even with this level 
of abstraction this display is (intentionally) somewhat 
more complex than needed so that some underlying 
features may be illustrated. The three coordinator PN 
controllers, which service requests from the dispatcher, 
will not be discussed in this example. 

subsystems. 



The dispatcher PN has been folded into a reverse 
“S” shape to save space; thus, the sequence of opera- 
tions is read from upper left to lower right. Operation 
of the three independent subsystems (camera, robot, 
and path planner) are represented as parallel paths 
which intersect when synchronization is required. The 
application starts when the req-demo place is marked 
by clicking the mouse button while the mouse pointer 
is over the place. 

Firing the start transition enables the parallel ini- 
tialization of camera and robot subsystems (transitions 
init-CAM and initAOB). Initialization of path planner 
( in i tSP)  waits until the robot is initialized so that the 
planner world model can obtain current robot position. 
At this point the CAMieady and PPieady places are 
marked indicating completion of their initialization. 
The final initialization step is to ensure that the robot 
is in its home position. While the marking of PP-ready 
place enables both the homed? and not-homed? tran- 
sitions, their enabling functions (Section 2.1) ensure 
that only one will fire. If the robot is not currently 
in home position then nothomed? and movehome will 
fire thereby moving the robot home. 

The sequence continues with firing of transition 
f ind-V which requests that the vision subsystem use 
the ceiling-mounted stereo cameras to find the loca- 
tion of the partially-completed triangular strut assem- 
bly. Successful completion of this operation produces 
data objects for the 3-D position and orientation of the 
assembly nodes that will receive the next strut. Places 
nodel-pose and node2-pose are marked when these 
data objects are stored in the Data Object Manager. 

Across the middle of the P N  display, read right- 
to-left, a sequence of operations calculates a view ap- 
proach position (calc-appr), plans a path to this posi- 
tion (PP-node), moves there (movenode), and then re- 
fines the measurement of node position using the robot 
wrist camera (ref inenode) for one node and then the 
other. The calculation of view approach position uses 
the estimated node pose obtained from the ceiling cam- 
eras. The node pose data object is replaced by an up- 
dated estimate following transition ref inenode. This 
sequence of operations has two parallel paths: one for 
camera and robot, and the other for path planning. 
Camera and robot operations must be synchronized 
because the robot must be at viewing position and 
stopped before the wrist camera can capture an im- 
age. Planning of the path between node 1 and node 2 
can proceed immediately after the path to node 1 is 
planned, however, because the start and end positions 
of the path are known, i.e. the two node poses found 
by the ceiling camera. 

At this point let us make a few observations. First, 
since ceiling and wrist cameras produce essentially 
the same information, albeit at different resolutions, 
we should be able to bypass all operations between 
Vfound and node2done. This may be accomplished 
by switching the dispatcher PN controller to single- 
step mode during find-V, deleting the token from 
VSound, and then adding tokens to places node2-done 
and PPidy3. We have demonstrated this alternate 
execution sequence, but have rarely obtained success- 
ful strut insertions due to the poorer resolution of the 
ceiling cameras. Second, for an actual application we 

probably don’t need to see all intermediate steps lead- 
ing to the update of node pose. We can easily abstract 
these into a one transition of the dispatcher display 
for each node. This use of abstraction is illustrated by 
the moveiack transition which represents a sequence 
of operations that use the wrist camera to find a strut 
in the strut rack and move the robot into position to 
pick it up. 

In the final sequence, shown across the bottom of 
the dispatcher display, the robot is instructed to pick 
up the strut (pickupstrut), move to insert approach 
position (movelnsert), insert the strut (insert),  and 
return to home (move-final). Input place OK-insert 
is added to transition insert  so that the operator 
can authorize the insertion. Subsequent to each robot 
movement the path planner plans the appropriate path 
(PPinsert and PPl ina l ) .  Lastly, the three subsys- 
tems are shutdown and the application returned to its 
starting state. Once the strut is removed from the as- 
sembly and returned to the strut rack the demonstra- 
tion may be immediately repeated without restarting 
the system. 

6 Concluding Remarks 
The experiences of several researchers, particularly 

those in factory automation, have demonstrated the 
value of Petri nets for controlling distributed robotic 
systems. At the CIRSSE robotics laboratory we have 
had similar experience. The integration of P N  con- 
trollers with robot and vision subsystem control soft- 
ware via a real-time, event-driven operating system has 
provided a very flexible environment for intelligent ma- 
chine research. 

Our use of Petri nets as an operator interface is 
more recent and less well developed. However, we are 
encouraged that the same tool, specifically Petri nets, 
can be used to analyze a complex, parallel, distributed 
system; to control that system; and to serve as an op- 
erator interface. The uniformity obtained by using one 
approach saves much effort otherwise spent converting 
between and reconciling different models. 

Future work will concentrate upon the development 
of synthesis techniques and software tools for con- 
structing large PN controllers from standardized sub- 
net components. And, the role of the operator in su- 
pervising the intelligent machine will continue to be 
investigated. 
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